Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner

نویسندگان

  • Maria Grazia De Giorgi
  • Aldebara Sciolti
  • Stefano Campilongo
  • Antonio Ficarella
چکیده

The article presents the data related to the flame acquisitions in a liquid-fuel gas turbine derived burner operating in non-premixed mode under three different equivalence fuel/air ratio, which corresponds to a richer, an intermediate, and an ultra-lean condition, near lean blowout (LBO). The data were collected with two high speed visualization systems which acquired in the visible (VIS) and in the infrared (NIR) spectral region. Furthermore chemiluminescence measurements, which have been performed with a photomultiplier (PMT), equipped with an OH* filter, and gas exhaust measurements were also given. For each acquisition the data were related to operating parameters as pressure, temperature and equivalent fuel/air ratio. The data are related to the research article "Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout" in Aerospace Science and Technology [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental and computational analysis at the laboratory scale

One strategy for reducing US dependence on petroleum is to develop new combustion technologies for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat and stati...

متن کامل

Gravity Effects Observed in Partially Premixed Flames

INTRODUCTION Partially premixed flames (PPFs) contain a rich premixed fuel–air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer–rich (or fuel–lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel–rich portions of the mixture and any remaining unburned fuel an...

متن کامل

A numerical investigation of flame liftoff, stabilization, and blowout

The effects of fuel stream dilution on the liftoff, stabilization, and blowout characteristics of laminar nonpremixed flames NPFs and partially premixed flames PPFs are investigated. Lifted methane-air flames were established in axisymmetric coflowing jets. Because of their flame suppression characteristics, two predominantly inert agents, CO2 and N2, were used as diluents. A time-accurate, imp...

متن کامل

Pollutant Formation during the Occurrence of Flame Instabilities under Very-Lean Combustion Conditions in a Liquid-Fuel Burner

Recent advances in gas turbine combustor design are aimed at achieving low exhaust emissions, hence modern aircraft jet engines are designed with lean-burn combustion systems. In the present work, we report an experimental study on lean combustion in a liquid fuel burner, operated under a non-premixed (single point injection) regime that mimics the combustion in a modern aircraft engine. The fl...

متن کامل

Simulation of Nitrogen Emissions in a Premixed Hydrogen Flame Stabilized on a Low Swirl Burner

There is considerable interest in developing fuel-flexible, low emissions turbines for power generation. One approach is based on burning a variety of lean premixed fuels with relatively low flame temperatures. Such flames can be stabilized in a low swirl burner configuration, for example, using a variety of fuels such as pure hydrogen and hydrogen-seeded hydrocarbon mixtures. However, many hyd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016